If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60^2+x^2=(4+2x^2)
We move all terms to the left:
60^2+x^2-((4+2x^2))=0
We add all the numbers together, and all the variables
x^2-((4+2x^2))+3600=0
We calculate terms in parentheses: -((4+2x^2)), so:We get rid of parentheses
(4+2x^2)
We get rid of parentheses
2x^2+4
Back to the equation:
-(2x^2+4)
x^2-2x^2-4+3600=0
We add all the numbers together, and all the variables
-1x^2+3596=0
a = -1; b = 0; c = +3596;
Δ = b2-4ac
Δ = 02-4·(-1)·3596
Δ = 14384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14384}=\sqrt{16*899}=\sqrt{16}*\sqrt{899}=4\sqrt{899}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{899}}{2*-1}=\frac{0-4\sqrt{899}}{-2} =-\frac{4\sqrt{899}}{-2} =-\frac{2\sqrt{899}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{899}}{2*-1}=\frac{0+4\sqrt{899}}{-2} =\frac{4\sqrt{899}}{-2} =\frac{2\sqrt{899}}{-1} $
| 4-6n+3n=41-88 | | 28=v/4-11 | | 1/5n+9=12 | | n^2+4n-88=4 | | 3(3x-2x+x)=180 | | 1/3x+2/3x=11 | | 22.35=4g+3.91 | | 3x-6=8x-2 | | 38-x=24 | | n^2+4n-92=0 | | n2+4n-92=0 | | 3x/12+6/12=4x/12+2/12 | | 7.7=8.9-0.4x | | 37.93=8g+3.93 | | 3(n+2)=5n+3(n+1) | | 9.50h-11h+40=399.50 | | 1.7=3.7-0.4x | | 3(n+2+2)=5(n+n+1*3) | | x/3+20=0 | | 9.50*h+11*h+40=399.50 | | 9x+2x-8x-5=4 | | 11÷6k=65 | | 9.50*h+11*h-40=399.50 | | X+3x+9-7=14 | | (1/3)v=2-(2/9)v | | 8x=74+2x=56=180 | | x-7^2=1 | | -6(3-3a$-8(6a+5)=32 | | 8x+3=-45 | | 4(5x+3x+2)=264 | | 37.45=7g+3.71 | | 8x-28=64+6x |